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We investigate a connection between the t-J model and the strongly correlated Bardeen-Cooper-Schrieffer
�BCS� Hamiltonian, with the effect of strong electron correlations accounted by the Gutzwiller projection. We
show that in the immediate vicinity of half filling the projected two-dimensional BCS Hamiltonian with strong
pairing develops an antiferromagnetically ordered ground state. This result explicitly demonstrates that anti-
ferromagnetism in this model appears as a natural consequence of the strong Coulomb repulsion in a low doped
regime. At moderate doping the ground state of the Gutzwiller-projected BCS Hamiltonian is, in finite-system
studies, known to become qualitatively similar to Anderson’s resonating valence bond state which, in turn, fits
nicely with the properties of the t-J model in that regime. Combined together, these two properties indicate that
the projected BCS Hamiltonian at least qualitatively captures the essential low-energy physics of the t-J model
in the underdoped region.
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I. INTRODUCTION

The investigation of strongly correlated electron systems
has been a central issue in solid-state physics for more than
four decades. The discovery of high-Tc superconductivity in
copper-oxide based compounds �cuprates� revived the inter-
est in simple models displaying such strong correlations.
Two much investigated models are the Hubbard model and
its “descendant,” the t-J model.1,2 One of the main theoreti-
cal questions in that field is whether or not there is a super-
conducting phase in the t-J model.1 Besides, the interplay
between antiferromagnetism �AF� and superconductivity in
the cuprates as well as their sensitivity to doping is still not
very well understood.

It is clear that, in superconducting state induced by
electron-electron interaction, the formation of Cooper pairs
must also reflect strong electron correlations. As a result the
Bardeen-Cooper-Schrieffer �BCS� effective Hamiltonian
should be directly modified by the inclusion of a nondouble
occupancy �NDO� constraint to account for such an effect.

In a recent paper, Park3 discussed a close connection be-
tween the t-J model and the Gutzwiller-projected BCS
Hamiltonian. It was shown both numerically and analytically
that the ground states of the t-J model at half filling �i.e., of
the two-dimensional �2D� antiferromagnetic Heisenberg
model� and of the strongly correlated BCS Hamiltonian are
equivalent to each other. Moreover, at sufficiently small dop-
ing, there is numerical evidence of a strong overlap between
those two ground-state wave functions, which provides fur-
ther support for the existence of superconductivity in the t-J
model. Clearly it would be interesting to establish by analyti-
cal means such an equivalence at nonzero hole concentra-
tion. As is well known, slightly away from half filling the
long-range AF order is still observed in the cuprate supercon-
ductors. If the projected BCS Hamiltonian is indeed believed
to contain, close to half filling, the low-energy physics of the
t-J Hamiltonian, its ground state must also exhibit the AF

order in the immediate vicinity of half filling. This manifests
itself as a quite nontrivial necessary condition for the low-
energy physics described by the Gutzwiller-projected BCS
Hamiltonian to be considered identical to that of the t-J
Hamiltonian at sufficiently low doping.

The purpose of the present report is to investigate the
Gutzwiller-projected BCS Hamiltonian analytically, close to
half filling. We do not address here the issue of the properties
of the t-J model at moderate doping, concentrating our full
attention instead to the region of the phase diagram very
close to half filling. We derive the low-energy long-
wavelength effective action for the lightly doped 2D pro-
jected BCS Hamiltonian on a bipartite lattice. The action
obtained is shown to be identical to that of the 2D quantum
antiferromagnetic Heisenberg model explicitly represented
by the three-dimensional �3D� nonlinear � model. In other
words, close to half filling, the ground state of the
Gutzwiller-projected BCS Hamiltonian is antiferromagneti-
cally ordered and nonsuperconducting. Since the conven-
tional BCS Hamiltonian does not exhibit any magnetic or-
dering and always displays superconductivity, those results
explicitly demonstrate that antiferromagnetism appears as a
natural consequence of the strong Coulomb repulsion at low
doped regimes.

Formally, the Gutzwiller projection takes care of the
strong electron correlation due to the large on-site Coulomb
repulsion. Close to half filling, the strong short-range Cou-
lomb repulsion between lattice electrons brings about the
superexchange in the emergent local spin moments by means
of the virtual exchange processes which involve virtual cre-
ation of the electron-spin singlets on the nearest-neighbor
�nn� empty sites. As a result the Gutzwiller-projected strong-
pairing BCS Hamiltonian can be described in terms of the
emergent spin-spin exchange interaction and the AF ordering
continues from half filling up to a small doping. In other
words the projected BCS Hamiltonian can describe both the
superconducting state at moderate doping and, in contrast
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with the conventional BCS Hamiltonian, the ordered mag-
netic phase for sufficiently low doping.

This paper is organized as follows. In Sec. II we set up the
necessary notation and emphasize the importance of the
Gutzwiller projection close to half filling. In Sec. III the low-
energy action for the Gutzwiller-projected BCS Hamiltonian
is derived within the coherent-state path-integral approach.
We provide an independent operator derivation in Sec. IV. A
discussion of our results is presented in Sec. V. We conclude
in Sec. VI by discussing some physical implications of the
obtained low-energy representation of the projected BCS
Hamiltonian. Some necessary technical details are listed in
Appendixes A–C.

II. GUTZWILLER-PROJECTED BCS HAMILTONIAN

We start with the Gutzwiller-projected BCS Hamiltonian
on a 2D bipartite lattice, L=A � B:

HBCS
G = P̂GHBCSP̂G = P̂G�Ht + H��P̂G, �1�

where

Ht = − t�
ij�

�ci�
† cj� + H.c.�

is a kinetic term of strength t responsible for the hopping of
electrons from one lattice site to its nearest neighbor and

H� = �
ij

�ij�ci↑
† cj↓

† − ci↓
† cj↑

† + H.c.� �2�

is the pairing term in real space. Here ci� is the electron
annihilation operator at site i with the spin projection �
= ↑↓.

At every lattice site the Gutzwiller projection operator,

P̂G = �
i

�1 − ni�ni−��, ni� = ci�
† ci�,

projects out the doubly occupied states �↑↓� thereby reducing
the quantum Hilbert space to a lattice site product of the
three-dimensional spaces, Hpr, spanned by �0�i, �↑ �i, and �↓ �i.
Physically this modification of the original Hilbert space re-
sults in strong electron correlation effects which are believed
to account for the unusual and rich physics of the high-Tc
superconductors.

Upon introducing a full set of the on-site operators Xab

ª �a�	b�, a ,b=0, ↑ ,↓, which are also referred to as the Hub-
bard operators, the Gutzwiller projection is explicitly evalu-
ated to be

P̂Gci�
† P̂G = ci�

† �1 − ni−�� = Xi
�0,

P̂GniP̂G 
 ñi = ni − 2ni↑ni↓ = Xi
↑↑ + Xi

↓↓,

where X↑↑+X↓↓+X00= �0�	0�+ �↑ �	↑�+ �↓ �	↓�= Î is the identity
operator in the on-site Gutzwiller-projected Hilbert space.
Note that the eigenvalues of the projected electron number
operator, ñi, are either zero or one so that the doubly occu-
pied states are prohibited. It should be stressed that, close to

half filling, the Gutzwiller projection is of a crucial impor-

tance: the projected electron operator P̂Gci�
† P̂G in this region

significantly differs from the bare electron operator ci�
† �right

at half filling P̂Gci�
† P̂G=0�.

With these notations Eq. �1� can be rewritten in the
equivalent form,

HBCS
G = − t�

ij�

�Xi
�0Xj

0� + H.c.� + �̃h�
i

Xi
00

+ �
ij

�ij�Xi
↑0Xj

↓0 − Xi
↓0Xj

↑0 + H.c.� , �3�

where we have introduced the chemical-potential term to
control the total number of doped holes, Nh=�iXi

00, where

Xi
00 = P̂G�1 − ni�P̂G = 1 − n↑i − n↓i + n↑in↓i.

The local NDO constraint is rigorously taken into account
at the expense of the introduction of the Hubbard operators
with more complicated commutation relations than those of
the standard fermion algebra. In fact, fermionic operators Xi

�0

together with the bosonic ones Xi
��� form, on every lattice

site, a basis of the fundamental representation of the graded
Lie algebra SU�2 �1� given by the �anti�commutation rela-
tions

�Xi
ab,Xj

cd�� = �Xi
ad�bc � Xj

bc�ad��ij , �4�

where the �+� sign should be used only when both operators
are fermionic.

In the strong-pairing limit ����� t� the projected BCS
Hamiltonian �3� reduces to

H�
G = �

ij

�ij�Xi
↑0Xj

↓0 − Xi
↓0Xj

↑0 + H.c.� + �̃h�
i

Xi
00. �5�

In contrast with the conventional real-space BCS Hamil-
tonian, the strongly correlated BCS Hamiltonian given by
Eq. �5� is not an exactly solvable model. Since the Hubbard
operators appear as the elements of the SU�2 �1� superalge-
bra, a natural framework to address this problem is provided
by the SU�2 �1� coherent-state path-integral representation of
the partition function.

Note finally that the chemical potential �̃h we deal with in
this paper is served to control a number of the doped carriers
in the projected Hilbert space. In contrast, the chemical po-
tential �e commonly used in the unprojected BCS Hamil-
tonian,

HBCS = Ht + H� + �e�
i�

ni�,

fixes a total number of the electrons in the full Hilbert space
where the on-site double electron occupancy is allowed. It
should be kept in mind that those two potentials exhibit, as
functions of doping, quite different properties. We explicitly
elaborate on this point in Sec. V. Throughout this paper we
consistently use the chemical potential �̃h which from now
on is denoted as �ª �̃h.
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III. SU(2 1) COHERENT-STATE PATH INTEGRAL
REPRESENTATION OF THE PARTITION FUNCTION

In the SU�2 �1� coherent-state basis the partition function,

Z� = tr exp�− 	H�
G� ,

takes the form of the SU�2 �1� coherent-state phase-space
path integral �see Appendix B�:

Z� =� D��z,
�eS�, �6�

where

D��z,
� = �
i,t

dz̄i�t�dzi�t�
2�i�1 + �zi�2�2d
̄i�t�d
i�t� .

Here zi is a complex number that keeps track of the spin
degrees of freedom while 
i is a complex Grassmann param-
eter that describes the charge degrees of freedom.

The effective action,

S� = i�
i
�

0

	

ai�t�dt − �
i
�

0

	


̄i��t + iai�
idt − �
0

	

H�
G,cldt ,

�7�

involves the U�1�-valued connection one-form of the mag-
netic monopole bundle �see Appendix A� that can formally
be interpreted as a spin “kinetic” term,

ia = − 	z��t�z� =
1

2

ż̄z − z̄ż

1 + �z�2
,

with �z� being the SU�2� coherent state. This term is also
frequently referred to as the Berry connection. The dynami-
cal part of the action takes the form

H�
G,cl = �

ij
��ij
i
 j

z̄ j − z̄i

��1 + �zi�2��1 + �zj�2�
+ H.c.� + ��

i


̄i
i.

�8�

Here zi�t� and 
i�t� are the dynamical fields. This representa-
tion rigorously incorporates the constraint of no double oc-
cupancy. Since the NDO constraint is explicitly resolved in
representation �6�, the dynamical variables zi and 
i bear no
local gauge redundancy associated with the constraint-
generated local gauge transformations, and in contrast with
the slave-particle fields, are gauge independent. Note also
that the on-site representation �6� and �7� at H�=0 yields
ZH�=0=dimHpr=3, as it should.4

Under the global SU�2� rotation,

zi →
uzi + v

− v̄zi + ū
, 
i�t� → ei�i
i, ai → ai + d�i, �9�

where

�i = − i log�− vz̄i + u

− v̄zi + ū
, � u v

− v̄ ū
� � SU�2� . �10�

Effective action �7� is invariant under the global spin rota-
tions given by Eq. �9�.

Let us now make the following change in variables on the
sublattice B,

zi → −
1

z̄i

, 
i → 
̄i�zi

z̄i

, i � B . �11�

This transformation is equivalent to SU�2� rotation �9� with
u=0 and v=1 followed by a complex conjugation. Under

this transformation, S� i→−S� i and the gauge potential ai
changes its sign, ai→−ai. The effective action then becomes

S� → S� = i�
i�A
�

0

	

ai�t�dt − �N	/2

+ �
i�A
�

0

	


̄i�− �t − iai − ��
idt

+ �
i�B
�

0

	


̄i�− �t − iai + ��
idt − �
0

	

H�
G,cldt ,

where

H�
G,cl = �

ij

��ij
̄i
 j	zj�zi� + H.c.� ,

and 	zi �zj� stands for an inner product of the SU�2� coherent
states,

	zi�zj� =
1 + z̄izj

��1 + �zj�2��1 + �zi�2�
. �12�

This can be written in the form

S� = i�
i�A
�

0

	

ai�t�dt − �N	/2 + �
ij
�

0

	


̄i�t�Gij
−1�t,s�
 j�s�dtds ,

�13�

where

Gij
−1�t,s� = G�0�ij

−1 �t,s� − iai�t��ij��t − s� + ij�t���t − s� ,

with ij =�ij	zj �zi� and

G�0�ij
−1 �t,s� = �ij�− �t − ����t − s�, i � A ,

G�0�ij
−1 �t,s� = �ij�− �t + ����t − s�, i � B .

The fermionic degrees of freedom in Eq. �6� can formally
be integrated out to yield

� D
̄D
 exp��
ij
�

0

	


̄i�t�Gij
−1�t,s�
 j�s�dtds�

= exp Tr log G−1

= exp�Tr log G�0�
−1 + Tr log�1 − G�0�ia + G�0��� .

�14�

Here the trace has to be carried out over both space and time
indices. Calculating explicitly a factor that comes from the
zero-order Green’s function, we get
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Z0 ª Z�=a=0 = exp�Tr log G�0�
−1 − �N	/2�

= exp�	�
i�A

log G�0�
−1 + 	�

i�B

log G�0�
−1 − �N	/2�

= �2 cosh
�	

2
e−��	/2��N

,

which is a correct result for the partition function of N non-
interacting spinless fermions,

Z0 = tr exp�− ��
0

	

�
i

f i
†f i� .

Up to this point no approximation has been made in the
derivation of the effective action. In fact, we are interested in
a derivation of an effective action to describe a low-energy
dynamics of the spin degrees of freedom of the projected
strong-pairing Hamiltonian close to half filling. For that pur-
pose we deduce an effective action in the spin degrees of
freedom by performing a perturbative expansion of the ex-
pression Tr log�1−G�0�ia+G�0�� in powers of ��� /��1.
Physically, this corresponds to the lightly doped region of the
phase diagram �see Sec. V�. The second step consists of ex-
panding the obtained representation up to first order in �t and
second order in �ij implying that eventually we will set i
→ j. This amounts to the so-called gradient expansion that
corresponds to the low-energy and long-wavelength limit of
the action. In this way we obtain

Tr log�1 − G�0�ia + G�0�� = − Tr�G�0�ia� −
1

2
Tr�G�0�G�0�� .

�15�

Note that Tr�G�0�iaG�0��=0 since ii=0. This expansion is
justified in the limit ��� /��1, �	�1.

The a-dependent term in Eq. �15� contributes to the action
in the following way

− Tr�G�0�ia� = − i�
i�A

G�0�i�0−��
0

	

ai�t�dt

− i�
i�B

G�0�i�0−��
0

	

ai�t�dt ,

where G�0�i�0−�ª lim�→0 G�0�i�−��, ��0, and

G�0�i
A/B��� =

e���

1 + e��	 − ����e���. �16�

Here the upper sign corresponds to the case i�A, whereas
the lower one corresponds to the case i�B. Explicit repre-
sentation �16� tells us that

�S1 ª − Tr�G�0�ia� = − i�
i�B
�

0

	

ai�t�dt + O�e−�	� , �17�

where it is implied that �	�1.
Let us now turn to the second term in Eq. �15�. We get

�S2 ª −
1

2
Tr�G�0�G�0��

= −
1

2�
ij
� G�0�i�t1 − t2�ij�t2�G�0�j�t2 − t1� ji�t1�dt1dt2.

Introducing new variables, �=
t1−t2

2 , �=
t1+t2

2 , and expanding
the product ij��+�� ji��−��=ij��� ji���+O��� �this cor-
responds to the gradient expansion in imaginary time5� gives
to the lowest order

�S2 = −
1

2�
ij
�

−	

	

G�0�
A ���G�0�

B �− ��d��
0

	

ij��� ji���d� .

�18�

With the help of Eq. �16� we get

−
1

2
�

−	

	

G�0�
A ���G�0�

B �− ��d� =
1

2�
�1 + O�e−�	�� . �19�

The effective spin action is given by the sum of all the term
evaluated above:

Z�
eff/Z0 =� D��z, z̄�eS�

eff
, �20�

where the SU�2� invariant measure factor

D��z, z̄� = �
i,t

dz̄i�t�dzi�t�
2�i�1 + �zi�2�2 ,

and

S�
eff = i�

i�A
�

0

	

ai�t�dt − i�
i�B
�

0

	

ai�t�dt

+ �
ij
�

0

	 ��ij�2

2�
�	zi�zj��2dt . �21�

Let us now rotate the spin on the sublattice B back to their
initial position, zi→−1 / z̄i. Under this transformation

�	zi�zj��2 → 1 − �	zi�zj��2, ai�B → − ai�B.

In this way we finally get

S�
eff = i�

i
�

0

	

ai�t�dt − �
ij

Jij
�U=�,���

0

	

��	zi�zj��2 − 1�dt ,

�22�

where the long-wavelength limit �j→ i� is implied. This ac-
tion describes the antiferromagnetic Heisenberg model with
the effective coupling �see Appendix A�

Jij
�U=�,�� = ��ij�2/2� � 0. �23�

The resulting model is the low-energy action for the fully
projected �U=�� BCS Hamiltonian in the vicinity of half
filling �� is large but finite�. In the explicit low-energy and
long-wavelength limit, 2D quantum action �22� reduces to
that of the 3D classical nonlinear sigma model �see Appendix
C�. Taking into consideration the renormalization-group
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analysis of that sigma model action,6 it then follows that the
ground state of the 2D Gutzwiller-projected BCS Hamil-
tonian is AF ordered at sufficiently low doping.

Right at half filling �→�, producing in this case
Jij

�U=�,��→0. However, this does not contradict Park’s obser-
vation that the projected BCS Hamiltonian �for large but fi-
nite U� possesses a long-range AF ordered ground state right
at half filling.7 To rederive Park’s result one should back off
from the infinite U limit. This can be seen as follows. Con-
sider the Hamiltonian

H�+U = �
ij

�ij�ci↑
† cj↓

† − ci↓
† cj↑

† + H.c.� + U�
i

ni↑ni↓, �24�

which, in the U→� limit, reduces to H�
G as in Eq. �5�. We

now back off from the infinite U limit, the effects of double
occupancy need to be built perturbatively in powers of � /U.
We thus consider the partially projected BCS Hamiltonian.

Let us make the following unitary transformation of the
electron operators for all sites j�B:

cj↑ → cj↓
† , cj↓ → − cj↑

† .

In this way we get

H�+U → − �
ij

�ij�ci�
† cj� + H.c.� + U�

i

ni↑ni↓ − U�
i�B

ni. �25�

Using the representation

ni↑ni↓ = −
2

3
Q� i

2 +
ni

2
,

where Q� i is the electron-spin operator, we can write down the
partition function as

Z�+U =� D�� D�̄D� exp�
0

	

L�+Udt , �26�

with

L�+U =
− 3U

8 �
i

�� i
2 − U�

i

�̄i���� i�i + �
ij

�ij��̄i� j + H.c.�

+ U�
i�B

�̄i�i,

�i = �ci↑,ci↓�t.

For U�� one gets �� i
2�1. As a result, in this limit, one

can make the identification �� i=2S� i
cl�z̄ ,z�.8 We use the iden-

tity

2S�cl�� = V�zV
†,

where

V =
1

�1 + �z�2
�1 − z̄

z 1
� . �27�

Moreover rotating now the spinors to the z axis, �→V�,
we get

L�+U → �
i

�̄i�− �t − U�z��i + U�
i�B

�̄i�i

+ �
i

�̄iVi
†�− �tVj�� j + �

ij

�ij�̄iVi
†Vj� j .

The fermionic degrees of freedom can now be integrated out
in the low-energy limit, yielding

Z�+U/Z0 =� D��z, z̄�eS�+U
eff

, �28�

where

D��z, z̄� = �
i,t

dz̄i�t�dzi�t�
2�i�1 + �zi�2�2 ,

and the effective low-energy action is again given by Eq.
�22� but now with Jij = ��ij�2 /2U�0. This consideration pro-
vides an independent proof of the equivalence of the low-
energy physics of the 2D Heisenberg AF model and the
Gutzwiller-projected strong-pairing Hamiltonian at half fill-
ing first established in Ref. 3 within a different approach.

IV. SECOND-ORDER OPERATOR PERTURBATION
THEORY

In this section we briefly comment on another derivation
of the low-energy representation of the projected BCS
Hamiltonian now following a more conventional operator
approach. Let us rewrite the Hamiltonian given in Eq. �5� in
the following way:

H�
G = H0 + V , �29�

with

H0 = ��
i

Xi
00, �30�

V = �
ij

�ij�Xi
↑0Xj

↓0 − Xi
↓0Xj

↑0 + H.c.� . �31�

At half filling, we take �→�. This ensures that any state
with a finite number of holes is projected out from the theory.
Close to half filling, � is large and therefore we can treat V
as a perturbation to H0. The ground state of H0 contains no
holes and is highly degenerate, corresponding to all possible
spin orientations in the half-filled limit. We denote this mani-
fold by �0g�.

Let us now define the operator P0 that projects into the
subspace with no holes, that is, it projects into the ground
state of H0. Up to second order in V, we can define the
effective Hamiltonian:9

Heff
gr = P0VP0 + �

�n�Og

P0V��n�	�n�VP0

�0 − �n
, �32�

where �0=0 is the ground-state energy and ��n� is an eigen-
state of H0 with eigenvalue �n.

Since V does not conserve the number of holes, the first-
order contribution is zero, that is, P0VP0=0. In the next or-
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der, we have to calculate matrix elements such as 	�n�V�0g�.
They are nonzero only if ��n� is a state containing two holes.
In other words, the second-order term is related to virtual
transitions where two neighboring holes are first created and
then destroyed, that is, Cooper pairing fluctuations in the
system. It is therefore clear that �0−�n=−2� and that our
effective Hamiltonian now becomes

Heff
gr = − �

ij

��ij�2

2�
�Xi

↑0Xj
↓0 − Xi

↓0Xj
↑0� � �Xj

0↓Xi
0↑ − Xj

0↑Xi
0↓� .

�33�

At half filling,

Xi
↑↓ = Si

+, Xi
↓↑ = Si

−, �34�

Xi
↑↑ − Xi

↓↓ = 2Si
z, Xi

↑↑ + Xi
↓↓ = ñi = 1, �35�

and after a straightforward algebra we get

Heff
gr = �

ij

��ij�2

�
�S� iS� j −

1

4
� . �36�

As a result, using a simple perturbative scheme, we find
that the ground-state of the strong-pairing Gutzwiller-
projected BCS Hamiltonian is indeed identical to that of the
antiferromagnetic Heisenberg model with coupling given by

Jij =
��ij�2

� , close to half filling.

V. DISCUSSION

Our results point out that the long-range AF order in the
low-energy physics of the strongly correlated BCS Hamil-
tonian is obtained not only at half filling but also in its vi-
cinity. Our derivation is strictly based on the analysis of the
Gutzwiller-projected BCS Hamiltonian in the strong-pairing
limit, i.e., � / t→�. However, slightly away from half filling
there may in principle be some effects due to a finite hopping
amplitude t. In general, the magnitude of t is quite large,
which may raise some objections to our results obtained by
having totally neglected the effects of the finite kinetic term.

In this section we show that those effects are in fact very
small close to half filling and can therefore be safely dis-
carded in this region. We start with the full Gutzwiller-
projected BCS Hamiltonian including the hopping term,
HBCS

G , given by Eq. �3�. The effective path-integral action is
given now by Eq. �7� with an extra contribution, −�0

	Ht
cl,

where

Ht
cl = − t�

ij

�
i
̄ j	zi�zj� + H.c.� . �37�

Here the overlap of the spin coherent states, 	zi �zj�, is given
by Eq. �12�. Right at half filling HBCS

G develops the AF long-
range ordered ground state. Let us recall now that we work
on a 2D bipartite lattice with nn interactions only. The AF

long-range order implies then that S� i
cl=−S� j

cl, where i and j
denote the nn lattice sites. To enforce these constraints one
must have zi=−1 / z̄ j �see Eq. �A3��. From Eq. �12� it then
follows immediately that 	zi �zj�=0 so that the kinetic term

makes no contribution to the total action. Very close to half
filling �in the region where the AF long-range order still

exists�, one gets Q� i
cl=−Q� j

cl, where Q� i is the electron-spin op-
erator �see Appendix B�. In this case for a small enough hole
concentration �, one gets

zi = − 1/z̄ j + O��� .

which in turn implies that

	zi�zj� = O���, � → 0. �38�

All this indicates that, very close to half filling, the under-
lying ground-state AF background enforces the following dy-
namical renormalization of the hopping amplitude,

t → �t .

Note that this type of the kinetic term renormalization has
been used successfully in the “renormalized mean-field
theory” of Zhang et al.10 to treat the t-J model close to half
filling. It is clear that in the vicinity of half filling the AF spin
background strongly suppresses hopping of the doped holes
around the lattice, reducing their contribution to the whole
dynamics to a mere weakening of the AF order parameter. In
contrast, if the spin background at half filling were instead
ferromagnetic �FM�, the whole situation would change dras-
tically. In that case one would get zi�zj and 	zi �zj��1. This
would mean that the hole hopping would be greatly favored
by the FM spin arrangement in such a way that even a small
concentration of the doped holes could have changed the
whole physical scenario altogether. This indeed happens in
the so-called Nagaoka limit of the t−J model.4

Hamiltonian �3� may formally be related to the
Gutzwiller-projected t-J Hamiltonian close to half filling
with the J term treated in a mean-field level. Namely, the
projected t-J model Hamiltonian in terms of the Hubbard
operators reads,

HtJ = − t�
ij�

�Xi
�0Xj

0� + H.c.� + J�
ij
�Q� iQ� j −

ñiñj

4
� , �39�

where Q� i is the electron-spin operator �see Eq. �B2��. Using
the singlet-pair-creation operators Bij

† = 1
2 �Xi

↑0Xj
↓0−Xi

↓0Xj
↑0�,

the magnetic part of the t-J Hamiltonian can identically be
rewritten in the form

HJ = − J�
ij

Bij
† Bij .

Close to half filling the hopping term, Ht, is effectively
renormalized: t→�t with ��1. If the hole concentration is
small enough and J is fixed, one gets J� t� so that Ht can be
discarded. A conventional Hartree-Fock decoupling applied
then to HJ yields

HtJ = − t�
ij�

�Xi
�0Xj

0� + H.c.� − �
ij

��ijBij
† + �ij

� Bij − ��ij�2� ,

�40�

with J incorporated into �ij. The parameter �ij�0 indicates
the onset of the electron-spin-singlet formation on the nn
sites. Since Bii=0 there are no electron pairs occupying one
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and the same lattice site. This is a manifestation of the strong
electron correlation driven by the large on-site Coulomb re-
pulsion. Unlike a conventional mean-field treatment, mean-
field decoupling �40� is applied only after the local NDO
constraint is rigorously imposed. One should keep in mind
however that mean-field decomposition �40� cannot be rigor-
ously justified and should at most be considered as a conjec-
ture. Our results �and also those of Ref. 3� show that this
conjecture is indeed highly plausible, at least close to half
filling.

Another issue to be discussed further concerns the use of
� /� as a small parameter. For the unprojected BCS model at
half filling, the chemical potential �e=0. Close to half filling,
�e should be small. As a result, � /�e does not represent a
small parameter in this region. This is, however, not the case
for the projected BCS Hamiltonian. To illustrate the differ-
ence we first consider the unprojected BCS Hamiltonian,

HBSC = − t�
ij�

�ci�
+ cj� + H.c.� − �e�

i�

ci�
† ci�

+ ��
ij

�ci↑cj↓ − ci↓cj↑ + H.c.� . �41�

This Hamiltonian arises from a mean-field �MF� decoupling
of the conventional Hamiltonian of the t−J model in the
particle-particle channel first proposed in Ref. 11. One ob-
tains the following equation to determine the chemical po-
tential at zero temperature

1

N
�

k�

tk� − �e

Ek�
= � , �42�

where Ek�
2= �tk� −�e�2+�2�k�

2 ,�k� =cos kx+cos ky. It is clear that
on a square lattice with the nn interaction one immediately
gets �=0 at �e=0. This can also be seen directly from rep-
resentation �41�: on a bipartite lattice with the nn interaction,
this Hamiltonian at �e=0 is invariant under a local unitary
transformation of the fermionic operators,

c↑ → c↓
†, c↓ → − c↑

†, �43�

which implies 	n�=2− 	n�, or equivalently, �=0. In the
strong-pairing limit, �� t; from Eq. �42� it also follows that
�e is small for small �.

The situation however changes drastically if one deals
with the fully projected �U=�� BCS Hamiltonian given by
Eq. �3�. To start with, substitution �43� does not represent a
unitary transformation of the projected electron �Hubbard�
operators. It cannot be used to fix a value of the hole con-
centration at �=0. Moreover, since the projected hole num-
ber operator, X00, is a diagonal matrix with the eigenvalues
zero and one, a chemical-potential term �X00 in Eq. �3�
singles out, in the limit �→�, the states with zero hole
concentration.

To illustrate this, consider the exactly solvable BCS-type
Hamiltonian for spinless fermions,

H = t�
ij

f i
†f j + ��

ij

�f if j + H.c.� + ��
i

f i
†f i. �44�

This Hamiltonian arises from Eq. �40� in which one treats the
spin content of the Hubbard operators at the MF level. In
spite of its trivial form, this model can illustrate the impor-
tance of the local NDO constraint �which is enforced by
definition since f i

2=0� to establish the explicit relation be-
tween � and �= 	f†f� at zero temperature,

1

2N
�

k�

tk� − �

Ek�
= � − 1/2, �45�

where tk� =−2t�k�, Ek�
2=�2	k�

2+ �tk� −��2, and 	k� =sin kx+sin ky.
In the case of strong pairing ��� t� and close to half filling
���1�, the above equation yields �� /��2��+O��2�. This
confirms that it is indeed meaningful to treat � /� as a small
parameter in the strong-pairing limit of the projected BCS
Hamiltonian close to half filling. Physically, in this limit,
there is no longer any Fermi surface and as a result the sys-
tem turns into an insulator. This is a direct consequence of
the strong electron correlations encoded in the NDO con-
straint.

Let us finally remark on the effect of the pairing symme-
try of �ij. We are primarily interested in a pairing with ex-
tended s-wave symmetry, where �ij =� for both j= i+ x̂ and
j= i+ ŷ, as well as in a pairing with the d-wave symmetry,
where �ij =� for j= i+ x̂ and �ij =−� for j= i+ ŷ. This sym-
metry is known to play no role exactly at half filling, where
there is long-range AF order, since the saddle-point equations
determining the AF order parameter are identical for both
types of pairings.3 Our representation �22� shows that this
result continues to be true at very low but finite doping,
where the AF order is still present. This happens because the
effective AF coupling Jij is proportional to ��ij�2, and again
the magnetically ordered phase of HBCS

G does not distinguish
between the s-wave and d-wave pairings.

VI. CONCLUSION

We conclude this work discussing the physical implica-
tions of the close connection between the Gutzwiller-
projected BCS Hamiltonian and the t-J model. Our result
shows that the ground state of the strong-pairing Gutzwiller-
projected BCS Hamiltonian can indeed be considered as a
reference state to a lightly doped Mott insulator that exhibits
long-range AF order for small enough dopings. Technically,
this is an important observation since it explicitly shows how
an ordered magnetic state can evolve out of the strongly
correlated slightly doped spin-liquid phase.

At moderate doping the spin-liquid state can be described
by the Gutzwiller-projected BCS ground state, or in other
words, by the short-range resonating valence bond �RVB�
state proposed by Anderson.12 Since the Gutzwiller projec-
tion does not commute with the BCS Hamiltonian,3 this RVB
state does not coincide with the ground state of the
Gutzwiller-projected BCS Hamiltonian. In particular, the
RVB state shows no long-range order even at half filling. In
contrast, right at, as well as in the immediate vicinity of, half
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filling the ground state of the strongly correlated BCS Hamil-
tonian exhibits long-range AF order as is observed in the
cuprate superconductors.

On the other hand, the RVB state seems to be very suc-
cessful in describing the properties of high Tc superconduct-
ors at moderate doping. In particular, at those dopings the
RVB wave function and its improvements13 yield good
agreement with experiments14 as well as with numerical
studies on the t-J model.15 As a result, that state is conjec-
tured to be a good ansatz wave function for the t-J model in
this region.10 Hasegawa and Poilblanc16 have shown that the
overlap between the RVB state and the ground state of the
t-J model is high ��90%� for the case of two holes in the
�10��10 lattice system, approximately corresponding to a
doping of �=0.2.

An interesting question then arises: what is the inter-
relationship between Anderson’s RVB state and the ground
state of the projected BCS Hamiltonian? It is quite clear that
those states are qualitatively different right at and close to
half filling. However, it seems quite plausible that those two
states are very close to each other at moderate doping. At
least there is a strong numerical evidence that for ��0.2
both of these states fit very nicely with the properties of the
t-J model. In particular, it has been shown that the optimal
overlap at moderate doping between the ground state of the
projected BCS Hamiltonian and that of the t-J model is more
than 98% for the same �10��10 lattice cluster.3 One may
therefore conclude �based on such finite-system studies� that
the ground-state wave function of the HBCS

G Hamiltonian is a
natural generalization of Anderson’s RVB state to describe
the t-J model in a region starting from a moderate doping
down right to half filling.

However, we should stress that this close relationship be-
tween the RVB state and the ground state of the projected
BCS Hamiltonian at moderate doping has not yet been es-
tablished analytically. Note also that the low-energy action
that corresponds to the strong-pairing projected BCS Hamil-
tonian, H�

G, cannot in itself account for the weakening as well
as for the eventual disappearance of the magnetic ordering
when the hole concentration increases. This effect is pro-
duced by the growing influence of the kinetic t term that
gradually destroys the long-range ordered state. Therefore,
one needs to include the kinetic t term into consideration to
regain the low-energy action that corresponds to the full
Gutzwiller-projected BCS Hamiltonian. This takes us away
from the strong-pairing limit discussed in the present work.

The strong-pairing limit is also no longer valid for mod-
erate doping. In this case a numerical study of the
Gutzwiller-projected BCS Hamiltonian can be used. Practi-
cally, to carry out numerical calculations one can employ the
recently proposed doped-carrier representation of the pro-
jected electron operators which turns out to be very efficient
close to, as well as moderately away from, half filling.17,18

Specifically, the Gutzwiller-projected BCS Hamiltonian is
much more amenable to the ansatz wave-function numerical
studies than the t-J model Hamiltonian. As for a possible
analytical study of the HBCS

G Hamiltonian for small and mod-
erate dopings, Abrikosov’s diagrammatic technique in the
doped-carrier representation can also be applied. Within that
approach the infinitely large Lagrange multiplier that effec-

tively enforces the NDO constraint can be incorporated in
the fermionic dopon propagator as discussed in Ref. 18. In
this way one arrives at a BCS-type theory of conventional
fermions coupled to a compact U�1� lattice gauge field. The
fermions with a modified propagator describe doped carriers
�holes�, whereas the gauge bosons represent the lattice spin
degrees of freedom. The details will be reported elsewhere.

In summary, we believe that the Gutzwiller-projected
BCS Hamiltonian encompasses at least qualitatively in a
simple and physically appealing way the properties of the t-J
model in the whole underdoped region. The crucial point is
that the long-range AF order is effectively built into the
ground state of the HBCS

G Hamiltonian so that the AF order
evolves directly out of the spin-liquid state in the limit of
very small doping. However, only numerical evidences are at
the present available for a close relationship between the two
models at moderate doping. To address this issue theoreti-
cally more elaborated efforts are needed to open up a new
perspective in analyzing the properties of high Tc supercon-
ductors in the whole underdoped regime.

APPENDIX A: SU(2) ALGEBRA AND COHERENT STATES

Consider the SU�2� algebra in the lowest s=1 /2 represen-
tation:

�Sz,S�� = � S�, �S+,S−� = 2Sz, S�2 = 3/4. �A1�

Acting with the “lowering“ spin operator S− on the “highest
weight“ state �↑ � we get the normalized SU�2� coherent state
�CS� parametrized by a complex number z:

�z� =
1

�1 + �z�2
exp�zS−��↑� =

1
�1 + �z�2

��↑� + z�↓�� . �A2�

In the basis spanned by the vectors �↑ � and �↓ �, we have
S+= �↑ � � 	↓�, S−= �↓ � � 	↑�, and Sz= 1

2 ��↑ � � 	↑�− �↓ � � 	↓��. The CS
symbols of the SU�2� generators are then easily evaluated to
be �Scl

ª 	z�S�z��:

S+
cl
ª

z

1 + �z�2
, S−

cl =
z̄

1 + �z�2
,

Sz
cl =

1

2

1 − �z�2

1 + �z�2
, S�cl

2 = 1/4, �S�2�cl = 3/4. �A3�

There is a one-to-one correspondence between SU�2� gen-
erator �A1� and their CS symbols given by Eqs. �A3�. Given

a quantum Hamiltonian H=H�S��, the corresponding imagi-
nary time phase-space action takes on the form,

ASU�2��z̄,z� = − �
0

	

	z�
d

dt
+ H�z�dt , �A4�

with the kinetic term being given by

ia = − 	z�
d

dt
�z� =

1

2

ż̄z − z̄ż

1 + �z�2
.

In particular, for the quantum s=1 /2 Heisenberg model,
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H = J�
ij

�S� iS� j − 1/4� ,

one gets

Hcl =
J

2�
ij

��	zi�zj��2 − 1� .

From the geometrical viewpoint, the SU�2� coherent
states �z� can be thought of as sections of the magnetic mono-
pole bundle P�S2 ,U�1��, with the U�1� connection one-form,
ia, frequently refereed to as the Berry connection. Base
space of that bundle, two-sphere S2, appears as a classical
phase space of spin, whereas its covariantly constant sec-
tions, �z� : ��t+ ia��z�=0, form a Hilbert space of a quantum
spin.

APPENDIX B: SU(2 1) SUPERALGEBRA AND COHERENT
STATES

Acting with the “lowering” superspin operators X↓↑ and
X↓0 on the “highest weight” state �↑ �, we get the normalized
SU�2 �1� coherent state in the 3D fundamental representa-
tion,

�z,
� = �1 + z̄z + 
̄
�−1/2exp�zX↓↑ + 
X0↑��↑�

= �1 + z̄z + 
̄
�−1/2��↑� + z�↓� + 
�0�� , �B1�

where z is a complex number, and 
 is a complex Grassmann
parameter. The Grassmann parameter appears here due to the
fact that X↓0 is a fermionic operator in contrast with the
operator X↓↑. The product 
X0↑ represents therefore a bosonic
quantity as required.

At 
=0, the SU�2 �1� CS reduces to the ordinary SU�2�
CS, �z ,
=0�
�z� �A2�, parametrized by a complex coordi-
nate z�CP1�S2. In contrast, at z=0, it represents a pure
fermionic CS.

The CS symbols of the X operators, Xclª 	z ,
�X�z ,
�, are

Xcl
0↓ = −

z
̄

1 + �z�2
, Xcl

↓0 = −
z̄


1 + �z�2
,

Xcl
0↑ = −


̄

1 + �z�2
, Xcl

↑0 = −



1 + �z�2
,

Qcl
+ = Xcl

↑↓ =
z

1 + �z�2
�1 −


̄


1 + �z�2
� ,

Qcl
− = Xcl

↓↑ =
z̄

1 + �z�2
�1 −


̄


1 + �z�2
� ,

Qcl
z =

1

2
�Xcl

↑↑ − Xcl
↓↓� =

1

2

1 − �z�2

1 + �z�2
�1 −


̄


1 + �z�2
� . �B2�

Given a Hamiltonian as a polynomial function of the Hub-
bard operators, H=H�X�, the corresponding imaginary time
phase-space action takes on the form,

ASU�2�1� = − �
0

	

	z,
�
d

dt
+ H�X��z,
�dt , �B3�

with the kinetic term given by

	z,
��−
d

dt
��z,
� =

1

2

ż̄z − z̄ż + 
̇̄
 − 
̄
̇

1 + �z�2 + 
̄

. �B4�

Substituting H�X�=H� into Eq. �B3� and making the change
in variables zi→zi
i→
i

�1+ �zi�2, we are led to effective ac-
tion �7�.

APPENDIX C: NONLINEAR � MODEL

Consider the one-dimensional �1D� s-spin quantum AF
Heisenberg model on a bipartite lattice, L=A � B,

HAF = �
	ij�

Jij�S� iS� j − s2�, Jij � 0, �C1�

where Jij =J for the nn sites and Jij =0 otherwise. Let us
make the change J→J /2s and consider Hcl=2sHs=1/2

cl . The
coherent-state action turns out to be proportional to 2s so that
SAF= �2s�Ss=1/2, where

Hs=1/2
cl = �

	ij�

Jij

2
��	zi�zj��2 − 1� , �C2�

so that

Ss=1/2 = i�
i�
�

0

	

ai�t�dt − �
0

	

Hs=1/2
cl

coincides with the action given by Eq. �22�, provided we
identity Jij in Eq. �C2� with ��ij�2 /�.

To proceed, notice the following identity

�	zi�zj��2 = exp �ij , �C3�

where

�ij = F�z̄i,zj� + F�z̄ j,zi� − F�z̄i,zi� − F�z̄ j,zj� � 0, �C4�

and F�z̄i ,zj�=log�1+ z̄izj� is the so-called SU�2� Kaehler po-
tential, in terms of which the �-model action can be derived.

In order to obtain the Néel ground state, we should have

S�A
cl=−S�B

cl. To this end, let us make the following change in
variables in the path integral:19

zi → zi + 
i, i � A; zi → − 1/�z̄i − 
̄i� i � B ,

where 
i , 
̄i stand for a set of auxiliary fields �a. In this way
we get

Hs=1/2
cl =

J

2�
i

Fz̄izi

� z̄

�xi

�z

�xi
a2 + 2J�

i

Fz̄izi

̄i
i, �C5�

where we have put zi=z�xi�, zi+1=z�xi+a�, with a being a
lattice spacing. The total action becomes,
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Ss=1/2 = SB +� dt�
i

Fz̄izi
�
iż̄i − 
̄iżi − 2J
̄i
i −

J

2

� z̄

�xi

�z

�xi
a2� ,

where SB is the Berry phase term which will be considered

shortly. The auxiliary fields 
̄i and 
i can be eliminated to
yield

Ss=1/2 =� dt�
i

Fz̄izi�−
J

2

� z̄

�xi

�z

�xi
a2 −

1

2J
ż̄iżi� + SB.

Restoring an explicit s dependence and going over to the
continuum �a→0� limit, finally yields

SAF = −
1

g2� dxdtFz̄z�c�xz̄�xz + c−1ż̄ż� + SB, �C6�

where c=2Jsa is the spin-wave velocity, g2=1 /s is the cou-
pling of the � model. We are free to choose units so that c
=1 and the action becomes Lorentz invariant:

SAF = −
1

g2� dxdt�gz̄z��z̄��z� = −
1

g2� dxdt
��z̄��z

�1 + �z�2�2 ,

� = 0,1. �C7�

The generalization of this result to the case of the
D-dimensional quantum antiferromagnet is trivial: in the
low-energy quasiclassical �large spin s� limit, it is described
by the classical D+1 dimensional � model �C7� where �
=0,1 ,2.. ,D.

The Berry phase term in 1D becomes

SB =
i

2
�

S2
da = s�

S2

dz ∧ dz̄

�1 + �z�2�2 = �2� i�sN ,

where N is an integer, the Brouwer degree of the map
z�x , t� :S2→S2. Thus, in 1D this phase term turns into a to-
pological �metric independent� invariant that gives rise to
dramatic consequences on ground-state degeneracy and low-
energy spectrum. In higher dimensions the Berry phase term
does not contribute to the action.
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